Indirect effects of X-irradiation on proliferation and osteogenic potential of bone marrow mesenchymal stem cells in a local irradiated rat model
نویسندگان
چکیده
Cancer survivors after radiotherapy may suffer a variety of bone‑related adverse side effects, including radioactive osteoporosis and fractures. Localized irradiation is a common treatment modality for malignancies. Recently, a series of reactions and injuries called indirect effects (remote changes in bone when other parts of the body are irradiated) have been reported on the indirect irradiated area of bone tissue after radiotherapy. To address this issue, we developed a rat localized irradiation model. Rats were irradiated with a single dose of X-rays to the left hind limbs, and bone marrow mesenchymal stem cells (BMMSCs) were isolated from bone marrow of the left (direct irradiated) and right (indirect irradiated) hind limbs 3, 7 and 14 days after irradiation, and assayed for the proliferation ability and osteogenic potential by alkaline phosphatase (ALP) activity, mineralization assay, RT‑PCR and western blot analysis. The results showed that there were significant morphology changes in the BMMSCs from direct and indirect irradiated bone tissue with bigger cell bodies and increased granules. The proliferation of BMMSCs decreased both in the direct irradiated and non‑irradiated bone tissue. The ALP expression and activities of BMMSCs from direct irradiated bone was consistently defected following a transient enhancement, the mRNA levels of RUNX2 and OCN, the protein expression of RUNX2, and the mineralization ability also showed the same trend. Simultaneously, in indirect irradiated group, the osteogenic potential indicators of BMMSCs decreased in the early stage of post‑irradiation and were still impaired 14 days after irradiation. Our data demonstrate that localized irradiation may have both direct and indirect adverse effects on BMMSCs' proliferation and osteogenic potential into osteoblast, which may be the mechanism of radiation-induced abscopal impairment to the skeleton in the cancer radiotherapy-induced bone loss.
منابع مشابه
Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملThe osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells
Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملThe effect of long term treatment of lowest effective dose of para-nonylphenol on viability, morphology and proliferation of rat bone marrow mesenchymal stem cells
Introduction: In this study, the effect of para-nonylphenol as an environmental pollutant on viability, morphology and proliferation of bone marrow mesenchymal stem cells was investigated. Methods: Bone marrow mesenchymal stem cells of rat were treated with the 0.5, 1, 2.5, 3.5 and 5 μM of paranonylphenol for a period of 21 days, then the viability of the cells were estimated using trypan bl...
متن کاملNaringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کامل